

PHYS*4150 Review

Solid State Physics

Course outline

- Free electron model
	- Drude
	- Sommerfeld
- Crystal lattices
	- Direct lattice
	- Reciprocal lattice
- Diffraction
- Semi-classical theory of metals
	- Electrons in crystal lattice
	- Bloch's theorem
	- Nearly-free electron model
- Dynamic lattice (phonons)

Metals

Free electron model

Drude Model

Classical treatment of electrons in a metal

scattering time τ

Sommerfeld Model

Application of Quantum mechanics and Fermi-Dirac statistics to Drude model

Drude model

Classical model of free electron gas

Independent electron approx.

Free electron approx.

Classical laws of motion

DC conductivity: resistivity, current density

AC conductivity: reflectivity, transparency, plasma frequency, skin depth

Hall effect: Hall coefficient

Thermal conductivity: thermal conductivity coefficient, thermopower (Seebeck effect)

FAILURES of model

Sommerfeld model

Quantum mechanics: free electron with periodic boundary conditions

Pauli exclusion principle: Fermi-Dirac statistics, chemical potential

Plane-wave solutions: introduction to k-space

Density of states

Corrections to $c_{\overline{V}}$ and $v_{\overline{0}}$

Fermi terminology

$$
\textstyle \sum_{\mathbf{k}} F(\mathbf{k}) = \frac{V}{8\pi^3} \sum_{\mathbf{k}} F(\mathbf{k}) \Delta \mathbf{k} \to \frac{V}{8\pi^3} \int F(\mathbf{k}) d\mathbf{k}
$$

Crystal lattices

Bravais lattices: primitive vectors, lattice $\mathsf{vectors} \to R(a_{_{I\!\!P}} a_{_{2\!\!P}} a_{_{3\!\!P}})$, unit cell, Wigner-Seitz cell Cubic lattices: Simple cubic, FCC, BCC

Lattice with a basis

Close-packed structures: HCP, FCC

 $\bar{R} = n_1 \bar{a}_1 + n_2 \bar{a}_2 + n_3 \bar{a}_3$

Face Centered Cubic Wigner-Seitz Cell

Body Centered Cubic Wigner-Seitz Cell

Reciprocal lattice

Fourier transform of direct lattice

More k-space

Bravais lattice: primitive vectors, reciprocal lattice vectors \rightarrow *K*(b_p , b_p , b_3)

Miller planes

Brillouin Zones

FCC path: T-X-W-K-T-L-U-W-L-K|U-X

BCC path: T-H-N-T-P-H|P-N

Diffraction

- Study/measurement of crystal **lattices**
- X-ray diffraction: direct measurement of reciprocal lattice
- Von Laue diffraction
- Powder diffraction
- Structure factor: lattice with a basis, intensity of diffracted peaks

$$
S_{\bar K} = \textstyle \sum_j e^{i \bar K \cdot \bar d_j} \qquad I_{\bar K} \propto \left| S_{\bar K} \right|^2
$$

Electrons in a crystal lattice

Integration of crystal lattices with free electron model: empty lattice approximation, 2N electron states per B.Z., reduction to 1st B.Z. \rightarrow bands

Bloch's Theorem: electrons in a periodic potential

Plane waves (FEM)
\n
$$
\psi_{n,k}(\bar{r})=e^{i\bar{k}\cdot\bar{r}}u_{n,k}(\bar{r})
$$
\n
$$
\psi_{n,k}(\bar{r})=e^{i\bar{k}\cdot\bar{r}}u_{n,k}(\bar{r})
$$
\nLattice modulation

$$
\psi_{n,k}(\bar{r}+\bar{R})=e^{i\bar{k}\cdot\bar{R}}\psi_{n,k}(\bar{r})
$$
\n
$$
u_{n,k}(\bar{r}+\bar{R})=u_{n,k}(\bar{r})
$$
\nion

\n
$$
u_{n,k}(\bar{r}+\bar{R})=u_{n,k}(\bar{r})
$$
\nnon

\n
$$
u_{n,k}(\bar{r}+\bar{R})=u_{n,k}(\bar{r})
$$
\nnon

\n
$$
u_{n,k}(\bar{r}+\bar{R})=u_{n,k}(\bar{r})
$$
\nnon

\n
$$
u_{n,k}(\bar{r}+\bar{R})=u_{n,k}(\bar{r})
$$

Nearly free electron

Weak periodic potential: treat with perturbation theory

Band gap = $2|V_G|$

Material types

Insulator requires even # of electrons

Filled bands are inert

Materials

Band structure

Dynamic lattice

Harmonic lattice approximation

Dynamical matrix: dispersion curves, 1D monatomic, diatomic lattice, optic and acoustic modes, generalize to 3D

3*N_b*N normal modes: _{N modes per} Brillouin zone per branch

Phonons

\n $Energy = \hbar\omega_{n,k}$ \n	\n Occupancy: # of phonons \n in state s,k\n
\n $n_{s,k} = \frac{1}{e^{\hbar\omega_{s,k}/k_B T} - 1}$ \n	\n Occupancy: # of phonons\n

$$
\varphi^0(l,l')=\tfrac{\partial^2 W}{\partial u_l \partial u_{l'}}\Big|_0
$$

$$
\hat{D}_{\alpha,\alpha'}^{\mu,\mu'}(\bar{k})=\tfrac{1}{\sqrt{M_\alpha M_{\alpha'}}}\sum_m \varphi_{\alpha,\alpha'}^{\mu,\mu'}(m)e^{i\bar{k}\cdot\bar{R_m^0}}
$$

Final Exam: Wed. April 17, 8:30-10:30am, MacN318